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Fig. 6. Semantic labeling results in comparison: (a) colorized mobile LiDAR point clouds; (b) ground truths; (c) results of the M3N approach; (d) results of label

transfer; (e) results of 3D-PatchMatchGraph with pairwise MRF.

configurations of k; = 0.03 and k3 = 0.01, respectively. Con-
sidering the point density and the huge number of points, we
adopted the 3D patch extraction strategy aforementioned in
Section III-A to downsample the points. The shape-based ap-
proach included the following four steps: locating, segmenting,
characterizing, and classifying clusters of 3D points. As the
quantitative results in Table III shown, our proposed framework
yields an average Fl-measure of 0.862, which outperforms
both two methods: the shape-based methods whose average F1-
measure is only 0.607, and the M3N method whose average
F1-measure is 0.784. The poor performance of the shape-based
approach demonstrates that it is not suitable for these scenarios
with severely overlapping and incomplete objects. The M3N
method outperforms the other methods except for our proposed
framework, and as seen in Fig. 6, the labeling results generated
by the M3N approach are not as smooth as it in our proposed
framework. This is because it is difficult for the M3N method
to train a probabilistic graphical model to fit complex scenarios
with unbalanced categories and incomplete objects.

The proposed framework and comparative studies were
coded with C++ and executed on a personal computer with a
single Intel core of 3.30 GHz and a RAM of 16 GB. The training
times for SVM-based, RF-based, Shape-based and M3N meth-
ods were 1.5, 0.5, 0.8, and 2.4 hours, respectively. The labeling
times of the whole test dataset for SVM-based, RF-based,
Shape-based and M3N methods were 4.4, 3.8, 4.2, and
5.8 hours, respectively. For our proposed framework, the train-
ing time was about 5.5 hours and the labeling time for the whole
test dataset was about 8.6 hours. The average time for labeling
an individual scene was about 4 minutes. Although our pro-
posed framework took more time than those of the other meth-
ods, it achieved a superior labeling performance than the other
methods. Moreover, in the 3D-PMG construction algorithm,
search moves such as propagation, inverse enrichment, and lo-
cal search moves can be implemented in parallel. The computa-
tional cost of these moves can be reduced to about 1/k times of
the non-parallel execution time. Here, & is the number of cores.

1.00
~o—road

~—-grass

e - — —4—palm tree
ironwood
0.90

—¥—brushwood
—&—light pole
—+—vehicle

0.80

F1-measure

0.70 ¥

0.60

0.15 0.2 0.25 0.3

3D Patch Size (m)

Fig. 7. Impact of 3D patch size on semantic labeling results.

D. Sensitivity of Our Proposed Framework

In this section, we analyze the impact of the following
parameters on the performance of the proposed approach: size
of 3D patch (L), and local search radius (Rjoc).

To analyze the influence of 3D patch size on the proposed
approach, the following configurations were tested: 0.15 m,
0.2 m, 0.25 m, 0.3 m, and 0.35 m. The test results are shown
in Fig. 7. As seen in Fig. 7, the Fl-measures for road, grass,
palm tree, and cycas, change slightly as the 3D patch size
increases. However, for vehicles, the F1-measure drops from
0.85 to 0.69 when the 3D patch size ranges from 0.2 m to
0.35 m. For light poles, the F1-measure decreases dramatically
from L = 0.3 m to L = 0.35 m. In fact, the number of 3D
patches will decrease with the increase of 3D patch size. As
a result, for those categories with minor number of points, the
possibility of matching correct 3D patches decreases as the 3D
patch size increases. Moreover, a large local 3D patch is not
suitable for describing simple structures like surfaces or lines
because of high possibility to introduce noisy points which
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Fig. 9. Impact of local search radius on semantic labeling results.

destroy these simple structures. As shown in Fig. 8, as the 3D
patch size increases, the training time decreases. This is because
the training time is influenced by the number of 3D patches. To
make a trade-off between the performance and the efficiency,
we set the 3D patches size at L = 0.2 m.

To analyze the impact of local search radius on the perfor-
mance of our proposed approach, the following configurations
were tested: 0.3 m, 0.5 m, 0.7 m, 1 m, and 1.5 m. As reflected
in Fig. 9, the Fl-measures change very slightly with an in-
crease in the local search radius. This is because propagation
achieves a similar effect to local search at the expense of a
low convergence rate. The reason for conducting a local search
in the proposed framework is that a larger local search radius
ascertains good matches of the current node rapidly. In addition,
as reflected in Fig. 11, the values of the objective function in
Eq. (1) decreases as the local search radius increases at the
training stage, which shows that the larger local search radius
assists in finding better local matches. Moreover, the training
time varies with an increase in local search radius (see Fig. 10).
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This is because the larger search radius requires more time to
search for candidate matches. To make a trade-off between the
performance and the efficiency of our proposed framework, we
set the local search radius at 1.0 m (see Fig. 11).

V. CONCLUSION

In this paper, in order to effectively conduct semantic la-
beling tasks on road scenes, we have presented a patch-based
framework that combines a 3D-PMG structure and a pairwise
MRF model by using colorized mobile LiDAR point clouds.
The 3D-PMG was used to transfer category labels from labeled
to unlabeled 3D patches by exploiting both intrinsic and con-
textual properties rather than local features only. The pairwise
MRF model was exploited to refine the label transfer re-
sults with contextual information. For evaluating the proposed
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framework, a ground truth with challenges including incomp
lete objects, overlapping objects, and inter-class local similar-
ities, was built. Quantitative evaluations demonstrated that our
proposed framework achieves an average precision, recall, and
F1-measure of 0.84, 0.896, and 0.862, respectively. In addition,
comparative studies also demonstrated the superior perfor-
mance of our proposed algorithm over the M3N method and
the shape-based method in semantically labeling complex road
scenes. Although our proposed framework obtained superior
performance, the labeling results still have space to be improved
by introducing higher-order [42] or co-occurrence potentials
[43] into the MRF model. We will try more complex potentials
to improve the labeling performance in our future work.

In addition, because of expensive computational costs, the
proposed framework is feasible and promising to some off-line
road labeling tasks. With the success in road scene labeling
based on colorized mobile LiDAR point clouds, the accurate
position and category information of objects may assist in I'TS-
related applications to well interpret the road environments.
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