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 Abstract — This paper presents a novel algorithm for 

extracting 3D crack skeletons from 3D point clouds acquired by 

a mobile Light Detection and Ranging (LiDAR) system. This 

algorithm uses intensity information of cloud clouds to identify 

pavement cracks that usually exhibit lower intensities compared 

to their surroundings. First, crack candidates are extracted by 

applying the Otsu thresholding algorithm. Then, a spatial 

density filter is used to remove outliers. Next, crack points are 

grouped into crack-lines using a Euclidean distance clustering 

method. Finally, crack skeletons are extracted based on an L1-

medial skeleton extraction method. The proposed algorithm has 

been tested on a set of mobile LiDAR point clouds acquired by a 

state-of-the-art RIEGL VMX-450 mobile LiDAR system. The 

results demonstrate the efficiency and reliability of the 

proposed algorithm in extracting 3D crack skeletons. 

 
 Index Terms – Crack skeleton, mobile LiDAR, point cloud, 

spatial density, L1-median 

 

I.  INTRODUCTION 

Rapid and cost-effective detection of road surface 

distress plays an important role in road surface maintenance. 

Pavement cracks, as the most common type of asphalt road 

surface distress, are usually caused by fracture due to 

excessive loading, fatigue, thermal changes, moisture 

damage, slippage, or contraction. Generally, according to the 

shape and position, cracks are classified into the following 

categories: fatigue, longitudinal, alligator, edge, reflection, 

block, and transverse [1], [2]. Detecting pavement cracks not 

only assists in maintaining and repairing road surface 

distress, but also provides an effective means to prevent 

potential disasters and improve traffic safety. Therefore, 

automated and cost-effective techniques for pavement crack 

detection are urgently in demand. 

Crack detection has been intensively studied in 

literature. Most of existing methods for crack detection are 

basically based on images. A 3D crack detection method 

presented in [3] was based on a combination of an image-

based 3D reconstruction method and a 3D crack detection 

algorithm. An integration model consisting of crack 

quantification, change detection, neural networks, and 3D 

visualization models was developed in [4] to retrieve 

concrete properties for bridge inspection. Similarly, an 

optimized eight-direction Sobel edge detector [5] was 

proposed to detect bridge cracks. The one-class Parzen 

density estimation and entropy reduction were used in [6] to 

detect pavement cracks. First, a one-class clustering method, 

using Parzen density estimation, was applied to select image 

areas likely to contain cracks. Next, the selected blocks were 

filtered using the UNITA entropy reduction properties and 

later automatically labeled as containing cracks or not. A 

novel algorithm was introduced in [7] for detecting cracks 

from underwater dam images. This algorithm used image 

intensities to generate a 3D spatial surface. The cracks that 

are difficult to describe in 2D images were regarded well as 

ditches in the 3D spatial surface. Then, by analyzing the 

characteristics of ditch space curvatures, a space detection 

method was used to obtain the ditch information, which was 

mapped to 2D surfaces as the cracks. 

Light Detection and Ranging (LiDAR) technologies 

have developed rapidly in the past decades. The data 

acquired by LiDAR systems have also been used for a 

variety of applications, such as building reconstruction [8], 

tree modeling [9], DEM generation [10], and road feature 

extraction [11]. Among the LiDAR products, mobile LiDAR 

systems have become a promising means for basic surveying 

and mapping. Due to the properties of high-density, long-

range, and cost-effective data acquisition, the point clouds 

acquired by mobile LiDAR systems have become an 

indispensable source for 3D city reconstruction and road 

feature extraction. The average density of the point clouds on 

the road surface can reach up to 4000 points/m2 with a 

moving speed of 50 km/h; therefore, mobile LiDAR systems 

provide a promising way to detect pavement cracks. 

In this paper, we propose a novel algorithm for 

extracting 3D crack skeletons directly from mobile LiDAR 

point clouds. Basically, mobile LiDAR systems use near-

infrared radiations to measure objects’ topologies and record 

the backscattered reflectance in a form of intensity. 

Therefore, first, we make use of the intensity information of 

the point clouds to identify crack candidates by applying the 

Otsu thresholding algorithm [12]. Then, a spatial density 

filter is developed to remove outliers in the identified crack 

candidates. Next, crack points are grouped into clusters 

representing individual crack-lines using a Euclidean 

distance clustering method. Finally, 3D crack skeletons are 

extracted by applying an L1-medial skeleton extraction 

method [13]. The proposed algorithm has been tested on a 

set of 3D point clouds acquired by a state-of-the-art RIEGL 

VMX-450 mobile LiDAR system. The experimental results 

demonstrate the efficiency and reliability of the proposed 

algorithm in extracting 3D crack skeletons directly from 

mobile LiDAR point clouds. 
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II.  METHOD 

As shown in Fig. 1, the proposed algorithm for 

extracting 3D crack skeletons contains four steps: crack 

candidate identification, spatial density filtering, Euclidean 

distance clustering, and L1-medial skeleton extraction. 

 

 

Fig. 1. Flowchart of the proposed 3D crack skeleton extraction algorithm. 

 

A. Crack Candidate Identification 

As shown in top left of Fig. 1, compared to the road 

surface, pavement cracks exhibit relatively lower intensities 

in the point cloud. However, due to the reflectance properties 

of laser beams and surface properties of the measured 

targets, the backscattered intensities vary greatly in the 

resultant point cloud. Therefore, to simplify the processing, 

first, we normalize the intensities of the data points in a point 

cloud into the range of [0,255] as follows: 
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where Gi denotes the normalized intensity of point i; Ii is the 

raw intensity of point i; n denotes the number of points in the 

point cloud. 

Then, to extract the points belonging to pavement 

cracks from the road surface point cloud, we apply the Otsu 

thresholding algorithm [12] to identify crack candidates 

based on the normalized intensities. The Otsu thresholding 

algorithm determines a global optimal threshold that 

maximizes the ratio of between-class variance to the within-

class invariance. After the threshold is calculated, the points 

with intensities below the threshold are regarded as crack 

candidates, while the others are treated as background points 

and further removed. A visual example of the obtained crack 

candidates is shown in top center of Fig. 1. 

B. Spatial Density Filtering 

Due to the mechanism of mobile LiDAR systems, the 

intensities reflected from an object also depend on the ranges 

from the scanner center and the incident angles of the laser 

beams. Therefore, the identified crack candidates contain 

considerable outliers (see top center of Fig. 1). Generally, 

compared to crack points, the outliers distribute dispersedly 

and irregularly. The spatial densities of the outliers are lower 

than those of crack points. Thus, to effectively remove these 

outliers, we propose a spatial density filter that calculates the 

spatial density of each crack candidate and removes the 

candidates whose spatial densities lie below a pre-defined 

threshold ds. The spatial density of crack candidate pi is 

defined as follows: 
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where N(pi) denotes the neighborhood of crack candidate pi; 

rd is the size of the neighborhood. After the spatial densities 

of crack candidates are calculated, the crack candidates with 

spatial densities below ds are regarded as outliers and further 

filtered out. A visual example of the extracted crack points 

after spatial density filtering is shown in top right of Fig. 1. 

C. Euclidean Distance Clustering 

As shown in top right of Fig. 1, the crack points 

belonging to a specific crack-line are still isolated. In order 

to group the discrete crack points into clusters representing 

individual crack-lines, we adopt a Euclidean distance 

clustering method. The Euclidean distance clustering method 

utilizes the Euclidean distances between each pair of crack 

points to group them into separated clusters. Specifically, an 

unlabeled crack point is contained into a certain crack-line if 

and only if its shortest Euclidean distance to the crack points 

in this crack-line lies below a clustering threshold dc. 

Otherwise, a new crack-line is created to contain this crack 

point. After Euclidean distance clustering, the discrete crack 

points are grouped to form separated crack-lines. Moreover, 

based on prior knowledge, the small-size clusters that are 

unlikely to be crack-lines are further removed. A visual 

example of the generated individual crack-lines is shown in 

bottom right of Fig. 1. 

D. Crack Skeleton Extraction 

L1-median [14] has proved to be a simple and powerful 

statistical tool to compute the global center of a given set of 

points. In this paper, rather than computing a single global 

center, we apply the L1-median locally to the crack-lines to 

generate a 3D skeleton representing the geometric structures 

of the crack-lines. Given a crack-line with a set of points 

{ }i i IC p  , its associated skeleton { }j j JX x   is calculated as 

follows [13]: 
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where h defines the local neighborhood size for the L1-

medial skeleton construction; I and J index the set of points 

in C and X, respectively; R(X) is a repulsion term for 

regularizing the local distribution of X when a skeleton 

branch is locally formed. 
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To effectively construct the repulsion term in (3), as 

mentioned in [13], we adopt a weighted principal component 

analysis (PCA) method to detect skeleton branches. For each 

point xj in X, we construct a covariance matrix for this point 

as follows: 
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After eigenvalue decomposition on the covariance matrix, 

we obtain three eigenvalues 
1

j , 
2

j , and 
3

j  (
1 2 3
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and the associated eigenvectors 
1

je , 
2

je , and 
3

je . Then, the 

directionality degree [13] of xj within its local vicinity is 

defined as follows: 
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Based on the directionality degree measure, the repulsion 

term in (3) is defined as follows: 
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where { }j j J   are the balancing constraints among X [13]. 

The minimization of (3) can be effectively solved by an 

iterative contraction process [13]. 

After applying the L1-median-based crack skeleton 

extraction method, the 3D crack skeleton of each crack-line 

is extracted. A visual example of the extracted 3D crack 

skeletons are shown in bottom center of Fig. 1. 

III.  RESULTS AND CONCLUSION 

A. VMX-450 System and Point Cloud Data 

The 3D point cloud data used in this study were 

acquired using a state-of-the-art RIEGL VMX-450 mobile 

LiDAR system (see Fig. 2) in Xiamen, China, which is a 

subtropical city located near the seaside. This system 

consists of two full-view RIEGL VQ-450 laser scanners, four 

high-resolution CCD cameras, and a set of inertial navigation 

systems (INS) including two global navigation satellite 

system (GNSS) antennas, an inertial measurement unit 

(IMU), and a wheel-mounted distance measurement 

indicator (DMI). The two laser scanners rotate to emit laser 

beams with a line scan speed of up to 400 scans per second 

and a maximum range of approximately 800 meters. 

Caused by heavy moisture and transportation loads, 

there are many cracks on the road surface in this area. Due to 

a high measurement rate (about 1.1 million measurements 

per second) of the VMX-450 system, the point density near 

to the scanner center can reach up to 7000 points/m2, and an 

average point density of more than 4000 points/m2 can be 

obtained on the road surface. Therefore, these point cloud 

data provide promising data source for extracting pavement 

cracks for transportation-related applications. From the 

collected data, we selected several datasets for evaluating the 

performance of the 3D crack skeleton extraction algorithm. 

 
Fig. 2. RIEGL VMX-450 mobile LiDAR system and its components. 

B. Performance Assessment 

As shown in Figs. 3(a), 4(a), and 5(a), we selected three 

road surface point clouds with different types of pavement 

cracks for evaluating our proposed algorithm. First, the Otsu 

thresholding algorithm was applied to threshold these road 

surface point clouds to identify crack candidates. Then, the 

spatial density filter with a local radius rd = 0.1 m and a 

density threshold ds = 6.0 was used to remove outliers (see 

Figs. 3(b), 4(b), and 5(b)). Next, the isolated crack points 

were grouped into individual crack-lines through the 

Euclidean distance clustering method with a clustering 

threshold dc = 2.5 cm (see Figs. 3(c), 4(c), 5(c)). Finally, 3D 

crack skeletons were extracted using the L1-medial skeleton 

extraction algorithm (see Figs. 3(d), 4(d), and 5(d)). 

 

 
Fig. 3. (a) Road surface point cloud, (b) obtained crack points after spatial 

density filtering, (c) clustered individual crack-lines, (d) extracted 3D crack 

skeletons, and (e) overlaid result. 
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Fig. 4. (a) Road surface point cloud, (b) obtained crack points after spatial 

density filtering, (c) clustered individual crack-lines, (d) extracted 3D crack 

skeletons, and (e) overlaid result. 

 

We also overlaid the extracted 3D crack skeletons onto 

the road surface point clouds for visual inspection, as shown 

in Figs. 3(e), 4(e), and 5(e), respectively. As seen from the 

overlaid results, we conclude that the proposed algorithm 

performs very well and achieves acceptable results. In 

addition, the proposed algorithm was implemented using 

C++ and executed very fast in extracting 3D crack skeletons. 

Therefore, we provide a promising and rapid framework for 

extracting 3D crack skeletons directly from 3D mobile 

LiDAR point clouds. 
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Fig. 5. (a) Road surface point cloud, (b) obtained crack points after spatial 

density filtering, (c) clustered individual crack-lines, (d) extracted 3D crack 

skeletons, and (e) overlaid result. 
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